Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36613425

RESUMO

Spectroscopy data are useful for modelling biological systems such as predicting quality parameters of horticultural products. However, using the wide spectrum of wavelengths is not practical in a production setting. Such data are of high dimensional nature and they tend to result in complex models that are not easily understood. Furthermore, collinearity between different wavelengths dictates that some of the data variables are redundant and may even contribute noise. The use of variable selection methods is one efficient way to obtain an optimal model, andthis was the aim of this work. Taking advantage of a non-contact spectrometer, near infrared spectral data in the range of 800-2500 nm were used to classify bruise damage in three apple cultivars, namely 'Golden Delicious', 'Granny Smith' and 'Royal Gala'. Six prominent machine learning classification algorithms were employed, and two variable selection methods were used to determine the most relevant wavelengths for the problem of distinguishing between bruised and non-bruised fruit. The selected wavelengths clustered around 900 nm, 1300 nm, 1500 nm and 1900 nm. The best results were achieved using linear regression and support vector machine based on up to 40 wavelengths: these methods reached precision values in the range of 0.79-0.86, which were all comparable (within error bars) to a classifier based on the entire range of frequencies. The results also provided an open-source based framework that is useful towards the development of multi-spectral applications such as rapid grading of apples based on mechanical damage, and it can also be emulated and applied for other types of defects on fresh produce.

2.
J Math Ind ; 11(1): 11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221823

RESUMO

In epidemiology, the effective reproduction number R e is used to characterize the growth rate of an epidemic outbreak. If R e > 1 , the epidemic worsens, and if R e < 1 , then it subsides and eventually dies out. In this paper, we investigate properties of R e for a modified SEIR model of COVID-19 in the city of Houston, TX USA, in which the population is divided into low-risk and high-risk subpopulations. The response of R e to two types of control measures (testing and distancing) applied to the two different subpopulations is characterized. A nonlinear cost model is used for control measures, to include the effects of diminishing returns. Lowest-cost control combinations for reducing instantaneous R e to a given value are computed. We propose three types of heuristic strategies for mitigating COVID-19 that are targeted at reducing R e , and we exhibit the tradeoffs between strategy implementation costs and number of deaths. We also consider two variants of each type of strategy: basic strategies, which consider only the effects of controls on R e , without regard to subpopulation; and high-risk prioritizing strategies, which maximize control of the high-risk subpopulation. Results showed that of the three heuristic strategy types, the most cost-effective involved setting a target value for R e and applying sufficient controls to attain that target value. This heuristic led to strategies that begin with strict distancing of the entire population, later followed by increased testing. Strategies that maximize control on high-risk individuals were less cost-effective than basic strategies that emphasize reduction of the rate of spreading of the disease. The model shows that delaying the start of control measures past a certain point greatly worsens strategy outcomes. We conclude that the effective reproduction can be a valuable real-time indicator in determining cost-effective control strategies.

3.
Plants (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009021

RESUMO

Rooibos is brewed from the medicinal plant Aspalathus linearis. It has a well-established wide spectrum of bio-activity properties, which in part may be attributed to the phenolic antioxidant power. The antioxidant capacity (AOC) of rooibos is related to its total phenolic content (TPC). The relation between TPC and AOC of randomly selected 51 fermented (FR) and 47 unfermented (UFR) rooibos samples was studied after extraction using water and methanol separately. The resulted extracts were assessed using two antioxidant assays, trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). The results were analyzed using both simple statistical methods and machine learning. The analysis showed different trends of TPC and AOC correlations of FR and UFR samples, depending on the solvent used for extraction. The results of the water extracts showed similar TPC and higher AOC of FR than UFR samples, while the methanolic extracted samples showed higher TPC and AOC of UFR than FR. As a result, the methanolic extracts showed better agreement between TPC and AOC than water extracts. Possible explanations are given for these observed results. Although, the current literature demonstrates direct correlations of the TPC and AOC of rooibos water extracts. This study showed deviation and highlighted the importance of solvent selection and analysis methodology as an important factor in determining the TPC/AOC correlation and subsequently the expectation of the actual health benefits of rooibos herbal tea. In particular, unfermented and fermented samples can be accurately identified on the basis of a combination of assays (any two of TPC, FRAP and TEAC), especially if methanol is the solvent used. Machine learning analysis of assay data provides nearly identical results with classical statistical analytical methods. This is the first report on machine learning analysis and comparison of the TPC and AOC of rooibos herbal tea extracted with methanol and water, and highlights the importance of using methanol as a solvent to evaluate its AOC.

4.
Bull Math Biol ; 81(11): 4366-4411, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31286347

RESUMO

We analyze an epidemiological model to evaluate the effectiveness of multiple means of control in malaria-endemic areas. The mathematical model consists of a system of several ordinary differential equations and is based on a multi-compartment representation of the system. The model takes into account the multiple resting-questing stages undergone by adult female mosquitoes during the period in which they function as disease vectors. We compute the basic reproduction number [Formula: see text] and show that if [Formula: see text], the disease-free equilibrium is globally asymptotically stable (GAS) on the nonnegative orthant. If [Formula: see text], the system admits a unique endemic equilibrium (EE) that is GAS. We perform a sensitivity analysis of the dependence of [Formula: see text] and the EE on parameters related to control measures, such as killing effectiveness and bite prevention. Finally, we discuss the implications for a comprehensive, cost-effective strategy for malaria control.


Assuntos
Malária/prevenção & controle , Modelos Biológicos , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Anopheles/parasitologia , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/estatística & dados numéricos , Feminino , Interações Hospedeiro-Parasita , Humanos , Malária/epidemiologia , Malária/transmissão , Conceitos Matemáticos , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/parasitologia
5.
Math Biosci ; 269: 186-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26407644

RESUMO

In this paper we propose and study a spatial diffusion model for the control of anthracnose disease in a bounded domain. The model is a generalization of the one previously developed in [15]. We use the model to simulate two different types of control strategies against anthracnose disease. Strategies that employ chemical fungicides are modeled using a continuous control function; while strategies that rely on cultivational practices (such as pruning and removal of mummified fruits) are modeled with a control function which is discrete in time (though not in space). For comparative purposes, we perform our analyses for a spatially-averaged model as well as the space-dependent diffusion model. Under weak smoothness conditions on parameters we demonstrate the well-posedness of both models by verifying existence and uniqueness of the solution for the growth inhibition rate for given initial conditions. We also show that the set [0, 1] is positively invariant. We first study control by impulsive strategies, then analyze the simultaneous use of mixed continuous and pulse strategies. In each case we specify a cost functional to be minimized, and we demonstrate the existence of optimal control strategies. In the case of pulse-only strategies, we provide explicit algorithms for finding the optimal control strategies for both the spatially-averaged model and the space-dependent model. We verify the algorithms for both models via simulation, and discuss properties of the optimal solutions.


Assuntos
Modelos Biológicos , Doenças das Plantas/prevenção & controle , Algoritmos , Coffea/microbiologia , Colletotrichum/patogenicidade , Simulação por Computador , Conceitos Matemáticos , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...